Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Hyunsoo Park* and Jacques Barbier

Department of Chemistry, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada

Correspondence e-mail: parkh2@mcmaster.ca

Key indicators

Single-crystal X-ray study
$T=299 \mathrm{~K}$
Mean $\sigma(\mathrm{Ga}-\mathrm{O})=0.002 \AA$
R factor $=0.028$
$w R$ factor $=0.066$
Data-to-parameter ratio $=36.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

PbGaBO_{4}, an orthoborate with a new structure-type

The crystal structure of a new ternary borate, lead gallium boron tetraoxide, PbGaBO_{4}, has been determined by X-ray diffraction using a single-crystal grown from a PbO flux. The structure consists of infinite [010] chains of edge-sharing GaO_{6} octahedra bridged by BO_{3} triangles. The Pb^{2+} cations and their stereoactive lone pair occupy the apex of PbO_{4} square pyramids. The structure represents a new structure-type for anhydrous orthoborates. Bond-valence analysis reveals the presence of strain within the octahedral chains.

Comment

Inorganic borates continue to be an active area of research with the aim of finding new compounds with interesting optical properties. Previous studies in our laboratory have resulted in the successful structure determinations of two new gallium borate compounds, $M \mathrm{Ga}_{2} \mathrm{~B}_{2} \mathrm{O}_{7}(M=\mathrm{Sr}, \mathrm{Ba})$ (Park \& Barbier, 2000). Our current investigation is focused on the $\mathrm{PbO}-X_{2} \mathrm{O}_{3}-\mathrm{B}_{2} \mathrm{O}_{3}$ systems ($X=\mathrm{Al}, \mathrm{Ga}$), which have not yet been explored. The structure of PbGaBO_{4} represents a new structure-type for the family of anhydrous orthoborates. It is based on a distorted octahedral coordination of Ga , a regular triangular coordination of B and the expected irregular fourfold coordination of divalent Pb with a stereoactive lone pair (Fig. 1). The structure is built of infinite chains of edge-sharing GaO_{6} octahedra parallel to the b axis and linked by BO_{3} triangles (Figs. 2 and 3). The short $\mathrm{B}-\mathrm{O}$ bonds $(1.37 \AA)$ in the

Figure 1
Part of the PbGaBO_{4} structure. The displacement ellipsoids are drawn at the 90% probability level. The symmetry codes are as in Table 1.

Received 17 August 2001 Accepted 22 August 2001 Online 31 August 2001

Figure 2
View of the PbGaBO_{4} structure approximately along the [100] direction. Strong angular distortions are associated with the bridging borate groups.

Figure 3
View of the PbGaBO_{4} structure along the [010] direction. The GaO_{6} octahedral chains are linked by the BO_{3} triangles.
BO_{3} groups bridging adjacent octahedra impose a strong angular distortion along the octahedral chains; the dihedral angle between adjacent octahedra deviate from the ideal angle of 60° and range from 49.8 to 77.7° (Fig. 2). Bond-valence analysis (Brese \& O'Keefe, 1991) indicates the presence of structural strain as a result of distortions in the GaO_{6} octahedra; the bond-valence sum around O 1 is high $[\sigma(s)=2.23]$ due to two short $\mathrm{Ga}-\mathrm{O} 1$ bonds ($1.889 \AA, s=0.65$), whereas the bond-valence sum around O 3 is low $[\sigma(s)=1.79$] due to two long $\mathrm{Ga}-\mathrm{O} 3$ bonds ($2.076 \AA, s=0.40$).

Experimental

Single crystals of PbGaBO_{4} were grown using a PbO flux. A stoichiometric mixture of $\mathrm{PbO}, \mathrm{Ga}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{3} \mathrm{BO}_{3}$ powders with 50 mole\% excess PbO (total weight 12.00 g) was melted at 1173 K in a covered Pt crucible and cooled to 773 K (at $3 \mathrm{~K} \mathrm{~h}^{-1}$). A large quantity of colourless prismatic crystals were recovered after dissolving the PbO flux in dilute aqueous HNO_{3}.

Crystal data
PbGaBO_{4}
$M_{r}=351.72$
Orthorhombic, Pnma
$a=6.9944$ (10) £
$b=5.8925$ (8) \AA
$c=8.2495(11) \AA$
$V=340.00(8) \AA^{3}$
$Z=4$
$D_{x}=6.871 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7743
reflections
$\theta=3.8-45.4^{\circ}$
$\mu=57.22 \mathrm{~mm}^{-1}$
$T=299$ (2) K
Prism, colourless
$0.10 \times 0.07 \times 0.04 \mathrm{~mm}$

Data collection

CCD area detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.016, T_{\text {max }}=0.101$
7743 measured reflections
1493 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.066$
$S=1.14$
1493 reflections
41 parameters

1336 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=45.4^{\circ}$
$h=-14 \rightarrow 11$
$k=-7 \rightarrow 11$
$l=-16 \rightarrow 15$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0348 P)^{2}\right. \\
& +0.5503 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=5.73 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-6.70 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0065 \text { (5) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Pb}-\mathrm{O} 1^{\text {i }}$	2.316 (4)	$\mathrm{Ga}-\mathrm{O} 2^{\text {i }}$	2.008 (2)
$\mathrm{Pb}-\mathrm{O} 2$	2.352 (2)	$\mathrm{Ga}-\mathrm{O} 3$	2.074 (2)
$\mathrm{Pb}-\mathrm{O} 2^{\text {ii }}$	2.352 (2)	$\mathrm{Ga}-\mathrm{O3}^{\text {i }}$	2.074 (2)
$\mathrm{Pb}-\mathrm{O} 1^{\text {iii }}$	2.365 (3)	$\mathrm{B}-\mathrm{O}^{\text {iv }}$	1.372 (6)
$\mathrm{Ga}-\mathrm{O} 1$	1.888 (2)	$\mathrm{B}-\mathrm{O} 2^{\text {v }}$	1.385 (3)
$\mathrm{Ga}-\mathrm{Ol}^{\text {i }}$	1.888 (2)	$\mathrm{B}-\mathrm{O} 2^{\text {i }}$	1.385 (3)
$\mathrm{Ga}-\mathrm{O} 2$	2.008 (2)		
$\mathrm{O} 1-\mathrm{Ga}-\mathrm{O} 1^{\text {i }}$	180.0 (3)	$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Ga}-\mathrm{O} 3$	91.53 (13)
$\mathrm{O} 1-\mathrm{Ga}-\mathrm{O} 2$	93.67 (13)	$\mathrm{O} 1-\mathrm{Ga}-\mathrm{O}^{\text {i }}$	98.35 (11)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ga}-\mathrm{O} 2$	86.33 (13)	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ga}-\mathrm{O}^{\text {i }}$	81.65 (11)
$\mathrm{O} 1-\mathrm{Ga}-\mathrm{O} 2^{\mathrm{i}}$	86.33 (13)	$\mathrm{O} 2-\mathrm{Ga}-\mathrm{O}^{\text {i }}$	91.53 (13)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ga}-\mathrm{O} 2^{\mathrm{i}}$	93.67 (13)	$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ga}-\mathrm{O}^{\mathrm{i}}$	88.47 (13)
$\mathrm{O} 2-\mathrm{Ga}-\mathrm{O} 2^{\mathrm{i}}$	180.00 (9)	$\mathrm{O} 3-\mathrm{Ga}-\mathrm{O}^{\text {i }}$	180.0
$\mathrm{O} 1-\mathrm{Ga}-\mathrm{O} 3$	81.65 (11)	$\mathrm{O}^{\text {iv }}-\mathrm{B}-\mathrm{O}^{2}$	120.08 (19)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ga}-\mathrm{O} 3$	98.35 (11)	$\mathrm{O} 3^{\text {iv }}-\mathrm{B}-\mathrm{O} 2^{\text {i }}$	120.08 (19)
$\mathrm{O} 2-\mathrm{Ga}-\mathrm{O} 3$	88.47 (13)	$\mathrm{O} 2^{\mathrm{v}}-\mathrm{B}-\mathrm{O} 2^{\mathrm{i}}$	119.8 (4)

Symmetry codes: (i) $-x,-y,-z$; (ii) $x, \frac{1}{2}-y, z$; (iii) $\frac{1}{2}-x,-y, \frac{1}{2}+z$; (iv) $-\frac{1}{2}-x,-y, z-\frac{1}{2}$; (v) $-x, \frac{1}{2}+y,-z$.

The locations of maximum and minimum peaks in the residual electron-density map: highest peak 5.73 e \AA^{-3} at $0.0592,0.1547$, $0.3570(0.56 \AA$ from Pb$)$ and deepest hole $-6.70 \mathrm{e}^{\AA} \AA^{-3}$ at 0.0553 , $0.2500,0.4608(0.84 \AA$ from Pb$)$.

inorganic papers

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XTALDRAW (Bartelmehs \& Downs, 1997); software used to prepare material for publication: SHELXL97.

Single-crystal diffraction data were collected by Dr J. F. Britten of the Department of Chemistry, McMaster University. This work was supported by the Canadian Natural Sciences and Engineering Research Council.

References

Bartelmehs, K. L. \& Downs, B. (1997). XTALDRAW. Release 2.0a. University of Texas, Austin, USA
Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Park, H. \& Barbier, J. (2000). J. Solid State Chem. 154, 598-602.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. Version 2.01. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Release 4.05. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.

